.

Terciptanya blog ini hanya ingin memberikan informasi kepada peminatnya

Sabtu, 23 Februari 2013

Persamaan Kuadrat


Persamaan kuadrat adalah suatu persamaan polinomial berorde dua. Bentuk umum dari persamaan kuadrat adalah
y = ax^2 + bx + c \,\!
dengan
a \ne 0 \,\!
Huruf-huruf ab dan c disebut sebagai koefisien: koefisien kuadrat a adalah koefisien dari x^2, koefisien linier b adalah koefisien dari x, dan c adalah koefisien konstan atau disebut juga suku bebas.

Rumus kuadratis dikenal pula dengan nama 'rumus abc karena digunakan untuk menghitung akar-akar persamaan kuadrat yang tergantung dari nilai-nilai ab dan c suatu persamaan kuadrat. Rumus yang dimaksud memiliki bentuk
x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
Rumus ini digunakan untuk mencari akar-akar persamaan kuadrat apabila dinyatakan bahwa
y = 0 \,\!.
Dari rumus tersebut akan diperoleh akar-akar persamaan, sehingga persamaan semula dalam bentuk
y = ax^2 + bx + c \,\!
dapat dituliskan menjadi
y = a (x - x_1) (x - x_2) \,\!.
Dari persamaan terakhir ini dapat pula dituliskan dua hubungan yang telah umum dikenal, yaitu
x_1 + x_2 = -\frac{b}{a} \,\!
dan
x_1 \cdot x_2 = \frac{c}{a} \,\!.
Ilustrasi dapat dilihat pada gambar.

[sunting]Pembuktian rumus kuadrat

Dari bentuk umum persamaan kuadrat,
ax^2 + bx + c = 0 \,\!
bagi kedua ruas untuk mendapatkan a = 1
x^2 + \frac{b}{a} x + \frac{c}{a}=0,\,\!
Pindahkan \frac{c}{a} ke ruas kanan
x^2 + \frac{b}{a}x = -\frac{c}{a} \,\!
sehingga teknik melengkapkan kuadrat bisa digunakan di ruas kiri.
\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} = -\frac{c}{a} \,\!
Pindahkan -\frac{b^2}{4ac} ke ruas kanan
\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} -\frac{c}{a} \,\!
lalu samakan penyebut di ruas kanan.
\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \,\!
Kedua ruas diakar (dipangkatkan setengah), sehingga tanda kuadrat di ruas kiri hilang, dan muncul tanda plus-minus di ruas kanan.
x+\frac{b}{2a}=\pm\frac{\sqrt{b^2-4ac\ }}{2a}
Pindahkan -\frac{b}{2a} ke ruas kanan
x=-\frac{b}{2a}\pm\frac{\sqrt{b^2-4ac\ }}{2a}
sehingga didapat rumus kuadrat
x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac\ }}{2a}


Nama  :  Yusuf Tauziri
Pelajaran  ;  Matematika
Guru  :  Ibu Anisa

Tidak ada komentar:

Posting Komentar